MaxPooling1 [DLBasic] 11 - 2. CNN introduction : Max pooling and others 저번 시간에는 간단하게 CNN의 개념을 알아보았다. 이번 시간에는 max pooling 등을 알아보도록 하겠다. 저번 시간에도 살펴보았듯이 CNN에서는 중간중간에 pooling이라는 단계가 있었다. pooling은 간단하게 샘플링이라고 볼 수 있다. 저번 시간에 배웠듯이 한 개의 convolutional layer의 깊이는 몇 개의 필터를 사용하는지에 따라 달라졌었고, 여기에서 한 개의 layer만 뽑아내서 작은 사이즈로 축소하는 것이 pooling layer이다. 위의 예시를 보자. stride 2이므로 2칸씩 이동하고, 2 x 2 필터이므로 2 x 2의 결과가 나올 것이다. 각각의 필터에서 가장 큰 값을 뽑아낸다면 맨 오른쪽과 같은 결과가 나올 것이다. 필터와 stride를 어떻게 정하느냐에 따라 다.. 2020. 1. 20. 이전 1 다음